Wilson, Tabatha

From: Gilliam, Allen

Sent: Monday, May 12, 2014 11:29 AM **To:** Richard Hexamer; sales@hotrodlane.cc

Cc: Fuller, Kim; Wilson, Tabatha; Mena Mike Spencer (menawwtp@gmail.com); mena

charles pitman; fayetteville denise georgiou

Subject: AR0036692_Street and Performance ARP001057 April 2014 periodic Pretreatment

report with ADEQ reply_20140512

Attachments: 1073228.pdf; Street and Performance April 2014 Periodic Pretreatment Compliance

Report.pdf

Richard,

Samples from Street and Performance (S&P) were taken by the City (1st attachment) on 2/21/14 and previously by S&P (2nd attachment) on 2/6/14.

As previously discussed with you over the phone, since both samples were taken during the same month the average of those two samples resulted in compliance with the Metal Finishing (40 CFR 433) standards' "Monthly average shall not exceed" for nickel of 2.38 mg/l.

For nickel: City sample = 2.5 mg/l + S&P sample = 0.095 mg/l averaging for the month 1.3 mg/l.

This office can proffer no idea why there was such a large discrepancy between the City's sample and S&P's just two weeks apart.

Mr. Spencer? Will you please respond the City's sampling took place at the same point as S&P's according to the pictures in the 2nd attachment?

The City's sample on 2/21/14 indicated S&P's nickel level was elevated (2.5 mg/l) and should be addressed in further treatment techniques to avoid possible future excursions.

It has previously been pointed out to the City, their sample's chain of custody was deficient because it had your printed name in one of the "relinquished by" boxes. It was the City's sample and S&P should not have any relationship to it.

Please continue this procedure; notifying the City when S&P has a batch discharge treated sufficiently to discharge to the City so both entities can conduct their own sampling, hopefully closer to the same day.

There are no further actions deemed necessary at this time.

Thank you for your report coming back into compliance with the Metal Finishing standards in 40 CFR 433.

Sincerely,

Allen Gilliam
ADEQ State Pretreatment Coordinator

501.682.0625

ec: Charles Pitman, City of Mena General Manager Mike Spencer, City of Mena Wastewater Superintendent Denise Georgiou, CH2M Hill consultant engineer for Mena

E/NPDES/NPDES/Pretreatment/Reports

Mena Water and Sewer ATTN: Mr. Mike Spencer 323 County Road 53 Mena, AR 71953

This report replaces American Interplex Corporation (AIC) Control No. 175733 originally sent on March 04, 2014. This report contains the analytical results and supporting information for the sample submitted on February 25, 2014. Attached please find a copy of the Chain of Custody and/or other documents received. Note that any remaining sample will be discarded two weeks from the original report date unless other arrangements are made.

This report is intended for the sole use of the client listed above. Assessment of the data requires access to the entire document.

This report has been reviewed by the Laboratory Director or a qualified designee.

Revised to correct client name.

Jøhn Overbey

Laboratory Direct∮r

This document has been distributed to the following:

PDF cc: Mena Water and Sewer

ATTN: Mr. Mike Spencer menawwtp@gmail.com

SAMPLE INFORMATION

Project Description:

One (1) water sample(s) received on February 25, 2014 Street & Performance

Receipt Details:

A Chain of Custody was provided. The samples were delivered in one (1) ice chest. Ice chest #1 was delivered with shipping documentation.

Each sample container was checked for proper labeling, including date and time sampled. Sample containers were reviewed for proper type, adequate volume, integrity, temperature, preservation, and holding times. Any exceptions are noted below:

Sample Identification:

Laboratory ID	Client Sample ID	Sampled Date/Time	Notes
175733-1	S&P 001 M,C	21-Feb-2014 1502	1,2,3

Notes:

- 1. Sample label was incomplete in regard to sample identification
- 2. Sample label was incomplete in regard to date/time of sampling
- 3. Sample was received unpreserved

Qualifiers:

D Result is from a secondary dilution factor

References:

"Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).

[&]quot;Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.

[&]quot;Standard Methods for the Examination of Water and Wastewaters", 21st edition.

[&]quot;American Society for Testing and Materials" (ASTM).

[&]quot;Association of Analytical Chemists" (AOAC).

ANALYTICAL RESULTS

AIC No. 175733-1

Sample Identification: S&P 001 M,C

Analyte	,0	Result	RL	Units	Qualifier
Total Cyanide SM 4500-CN C,E 1999	Prep: 27-Feb-2014 0753 by 308	0.52 Analyzed: 28-Feb-2	0.04 2014 1533 by 308	mg/l Batch: W46780	D Dil: 4
Total Recoverable Cadmium EPA 200.8	n Prep: 26-Feb-2014 1452 by 271	0.0012 Analyzed: 27-Feb-2	0.0001 2014 1332 by 305	mg/l Batch: S36338	
Total Recoverable Chromiu EPA 200.8	m Prep: 26-Feb-2014 1452 by 271	0.24 Analyzed: 27-Feb-2	0.007 2014 1332 by 305	mg/l Batch: S36338	
Total Recoverable Copper EPA 200.8	Prep: 26-Feb-2014 1452 by 271	1.4 Analyzed: 27-Feb-2	0.01 2014 1623 by 305	mg/l Batch: S36338	D Dil: 10
Total Recoverable Lead EPA 200.8	Prep: 26-Feb-2014 1452 by 271	< 0.001 Analyzed: 27-Feb-2	0.001 2014 1332 by 305	mg/l Batch: S36338	
Total Recoverable Nickel EPA 200.8	Prep: 26-Feb-2014 1452 by 271	2.5 Analyzed: 27-Feb-2	0.001 2014 1332 by 305	mg/l Batch: S36338	
Total Recoverable Silver EPA 200.8	Prep: 26-Feb-2014 1452 by 271	0.00024 Analyzed: 27-Feb-2	0.0002 2014 1332 by 305	mg/l Batch: S36338	
Total Recoverable Zinc EPA 200.8	Prep: 26-Feb-2014 1452 by 271	0.13 Analyzed: 27-Feb-2	0.002 2014 1332 by 305	mg/l Batch: S36338	

LABORATORY CONTROL SAMPLE RESULTS

	Spike									
Analyte	Amount	%	Limits	RPD	Limit	Batch	Preparation Date	Analysis Date	Dil	Qual
Total Cyanide	0.1 mg/l	106	85.0-115			W46780	27Feb14 0753 by 308	28Feb14 1528 by 308		
Total Recoverable Cadmium	0.05 mg/l	100	85.0-115			S36338	26Feb14 1452 by 271	27Feb14 1327 by 305		
Total Recoverable Chromium	0.05 mg/l	99.0	85.0-115			S36338	26Feb14 1452 by 271	27Feb14 1327 by 305		
Total Recoverable Copper	0.05 mg/l	104	85.0-115			S36338	26Feb14 1452 by 271	27Feb14 1327 by 305		
Total Recoverable Lead	0.05 mg/l	96.8	85.0-115			S36338	26Feb14 1452 by 271	27Feb14 1327 by 305		
Total Recoverable Nickel	0.05 mg/l	104	85.0-115			S36338	26Feb14 1452 by 271	27Feb14 1327 by 305		
Total Recoverable Silver	0.02 mg/l	96.2	85.0-115			S36338	26Feb14 1452 by 271	27Feb14 1327 by 305		
Total Recoverable Zinc	0.05 mg/l	101	85.0-115			S36338	26Feb14 1452 by 271	27Feb14 1327 by 305		

MATRIX SPIKE SAMPLE RESULTS

Analyte	Spike Sample Amount	%	Limits	Batch	Preparation Date	Analysis Date	Dil	Qual
Total Cyanide	175800-1 0.1 mg/l 175800-1 0.1 mg/l Relative Percent Difference	80.6 81.7 ee: 1.28	75.0-125 75.0-125 20.0	W46780 W46780 W46780	27Feb14 0753 by 308 27Feb14 0753 by 308	28Feb14 1530 by 308 28Feb14 1532 by 308		
Total Recoverable Cadmium	175771-1 0.05 mg/l 175771-1 0.05 mg/l Relative Percent Difference	87.1 86.0 e: 1.18	75.0-125 75.0-125 20.0	S36338 S36338 S36338	26Feb14 1452 by 271 26Feb14 1452 by 271	27Feb14 1202 by 305 27Feb14 1207 by 305		
Total Recoverable Chromium	175771-1 0.05 mg/l 175771-1 0.05 mg/l Relative Percent Difference	84.4 84.5 e: 0.172	75.0-125 75.0-125 20.0	S36338 S36338 S36338	26Feb14 1452 by 271 26Feb14 1452 by 271	27Feb14 1202 by 305 27Feb14 1207 by 305		
Total Recoverable Copper	175771-1 0.05 mg/l 175771-1 0.05 mg/l Relative Percent Difference	84.9 83.4 e: 1.72	75.0-125 75.0-125 20.0	S36338 S36338 S36338	26Feb14 1452 by 271 26Feb14 1452 by 271	27Feb14 1202 by 305 27Feb14 1207 by 305		
Total Recoverable Lead	175771-1 0.05 mg/l 175771-1 0.05 mg/l Relative Percent Difference	88.7 88.2 e: 0.528	75.0-125 75.0-125 20.0	S36338 S36338 S36338	26Feb14 1452 by 271 26Feb14 1452 by 271	27Feb14 1202 by 305 27Feb14 1207 by 305		
Total Recoverable Nickel	175771-1 0.05 mg/l 175771-1 0.05 mg/l Relative Percent Difference	85.7 84.3 ee: 1.73	75.0-125 75.0-125 20.0	S36338 S36338 S36338	26Feb14 1452 by 271 26Feb14 1452 by 271	27Feb14 1202 by 305 27Feb14 1207 by 305		
Total Recoverable Silver	175771-1 0.02 mg/l 175771-1 0.02 mg/l Relative Percent Difference	94.3 93.6 e: 0.814	75.0-125 75.0-125 20.0	S36338 S36338 S36338	26Feb14 1452 by 271 26Feb14 1452 by 271	27Feb14 1202 by 305 27Feb14 1207 by 305		
Total Recoverable Zinc	175771-1 0.05 mg/l 175771-1 0.05 mg/l Relative Percent Difference	83.0 81.6 e: 1.47	75.0-125 75.0-125 20.0	S36338 S36338 S36338	26Feb14 1452 by 271 26Feb14 1452 by 271	27Feb14 1202 by 305 27Feb14 1207 by 305		

LABORATORY BLANK RESULTS

				QC			
Analyte	Result	RL	PQL	Sample	Preparation Date	Analysis Date	Qual
Total Cyanide	< 0.01 mg/l	0.01	0.01	W46780-1	27Feb14 0753 by 308	28Feb14 1501 by 308	
Total Recoverable Cadmium	< 0.0001 mg/l	0.0001	0.0001	S36338-1	26Feb14 1452 by 271	27Feb14 1151 by 305	
Total Recoverable Chromium	< 0.007 mg/l	0.007	0.007	S36338-1	26Feb14 1452 by 271	27Feb14 1151 by 305	
Total Recoverable Copper	< 0.0005 mg/l	0.0005	0.0005	S36338-1	26Feb14 1452 by 271	27Feb14 1151 by 305	
Total Recoverable Lead	< 0.0005 mg/l	0.0005	0.0005	S36338-1	26Feb14 1452 by 271	27Feb14 1151 by 305	
Total Recoverable Nickel	< 0.0005 mg/l	0.0005	0.0005	S36338-1	26Feb14 1452 by 271	27Feb14 1151 by 305	
Total Recoverable Silver	< 0.0002 mg/l	0.0002	0.0002	S36338-1	26Feb14 1452 by 271	27Feb14 1151 by 305	
Total Recoverable Zinc	< 0.002 mg/l	0.002	0.002	S36338-1	26Feb14 1452 by 271	27Feb14 1151 by 305	

CHAIN OF CUSTODY / ANALYSIS REQUEST FORM

MENA	PO No.	NO/L-JON	ANALYSES REQUESTED	Q:	AIC CONTROL NO.
Project CL 1 FO F	1	・ ・ 5			AIC BEODOCAL NO:
9	SAMPLE	(Cic		:	AC PROPOSAL NO:
Project Mr KP Sookier	MATRIX	10 10 10 10 10 10 10 10 10 10 10 10 10 1			Carrier.
	≥ ⊲	2)\\ \ \ - -	-		
d ett Hanisan R		45 1040			Received Lemperature C
∢ α	— — шα Σα	m a	-		
SAPOOL M 21 FEB 2634	×	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Kemarks
2 SAPOOL C 21 FEB 2014	×	× ′ –			
					Field pH calibration
Container Type		Δ.			on (@
Preser		_			Buffer:
G = Glass P = Plastic		VOA vials	H = HCI to pH2		T = Sodium Thiosulfate
Please			Date (in philips)		
NORMAL OF EXPEDITED IN DAYS		12		By:	L Date/Ilme
Expedited results requested by:		RICHALD	14 xamm 2/21/14		200
ould AIC contact with qu		Relinduished //	Date/pline	ACCEIVED IN Lab	Date/Time
Phone: Fax:		- By: / Je//	TO STEED JAN	3	H122/2
Report Attention to: Report Address to:		Comments:	Comments: Con Posite of 4/9	the least	1020
		10:02	LO32, LL:42,13.22,1502		. 😯
5/01		WS 5981'8/02			TON MONTH OFFICE MINES
		=-	J. SOL	1277	() アーシー

Permit No. MENA01 Permit SP 2012 (3)

SECTION B. DISCHARGE LIMITATIONS & MONITORING REQUIREMENTS

The following limitations and monitoring requirements shall apply to discharge from Location S&P002 except for cyanide and flow usage, which apply as specified in the Table I-1 footnotes. The Permittee shall monitor the discharge from Locations S&P001 and S&P002, and the incoming water usage, and shall be limited as specified below:

Table I-1									
	LIMITA	ATIONS ¹	MONITORING REQUIREMENTS						
Parameter	Daily Maximum Monthly Average ²		Frequency ³	Sample Type					
	(mg/l)	(mg/l) (mg/l)							
Cadmium, total	0.11	0.07	Quarterly	Composite of 4 grabs					
Chromium, total	2.77	1.71	Quarterly	Composite of 4 grabs					
Copper, total	3.38	2.07	Quarterly	Composite of 4 grabs					
Lead; total	0.69	0.43	Quarterly	Composite of 4 grabs					
Nickel, total	3.98	2.38	Quarterly	Composite of 4 grabs					
Silver, total	0.43	0.24	Quarterly	Composite of 4 grabs					
Zinc, total	2.61	1.48	Quarterly	Composite of 4 grabs					
·Cyanide; total	1.20	0.65	Quarterly	Composite of 4 grabs 4					
-TTO: 40 CPR 493	2.13	-	NA	Certification ⁴					
Flow, Usage	Report	Report	Continuous	Totalizer ⁵					
Flow, Discharge	Report	Report	Continuous	Totalizer ⁶					

It is the Permittee's responsibility to ensure test detection levels are sufficiently low to demonstrate compliance with permit limitations. If an analytical result is below the laboratory detection limit, then the detection limit shall be used in the calculation of pounds unless permitted otherwise by the Control Authority. Use the following or lower detection limits in micrograms per liter (ug/l): 0.5 cadmium, copper, lead, nickel, and silver; 10 for chromium and cyanide; 0.005 for mercury; 20 for zinc.

² Monthly average is the average of all daily results in a calendar month regardless of the number of samples analyzed.

Week means Sunday through Saturday. Month means calendar month. Quarter means calendar quarter, Jan-Mar, Apr-Jun, Jul-Sep, and Oct-Dec. For this permit, Quarterly samples shall be collected in March, June. September, and December. The date and time of an individual grab sample is the date and time at which the sample is collected. The date of a composite sample is the date on which sample collection for the composite sample is started and stopped. The composite sample date will be one day if the composite sample is collected on one day, e.g. April 14, 2007, or two days if the composite sample is collected over two days, e.g. April 14-15, 2007. Monitoring by the Control Authority is not a substitute for monitoring required to be conducted by the Permittee in this permit unless the Control Authority notifies the Permittee in writing that specific monitoring by the Control Authority can be used to meet permit frequency requirements.

Cyanide samples must be collected from Location S&P002 unless no process water has flowed through Location S&P002 during the monitoring day, then samples will be from Location S&P001.

The Permittee has a State-approved Toxic Organics Management Plan (TOMP) and must comply with the

SEMI-ANNUAL REPORT FOR INDUSTRIAL USERS REGULATED BY 40 CFR 433 Use of this form is not an ADEQ requirement, but satisfies the reporting requirements in 40 CFR 403.12(e). (1) IDENTIFYING INFORMATION and NPDES Pretreatment Tracking # ARP00 A. LEGAL NAME & MAILING ADDRESS **B. FACILITY & LOCATION ADDRESS** State for Performance p.o. 30x 169 MENA Hd. 71953 C. FACILITY CONTACT: **TELEPHONE NUMBER:** e-mail: (2) REPORTING PERIOD--FISCAL YEAR From (Both Semi-Annual Reports must cover Fiscal Year) B. PERIOD COVERED BY THIS REPORT A. MONTHS WHICH REPORTS ARE DUE FROM: (3) DESCRIPTION OF OPERATION A. REGULATED PROCESSES **B. CHANGES:** SUMMARIZE ANY CHANGES IN THE REGULATED PROCESSES SINCE THE LAST REPORT. ATTACH AN ADDITIONAL SHEET IF THE SPACE BELOW IS INADEQUATE. PROVIDE A NEW **CORE PROCESS(ES)** SCHEMATIC IF APPROPRIATE. CHECK EACH APPLICABLE BLOCK G Electroplating & **G** Electroless Plating **G** Anodizing G Coating (conversion) G Chemical Etching and Milling G Printed Circuit Board Manufacture ANCILLARY PROCESS(ES) LIST BELOW EACH PROCESS USED IN THE FACILITY SEE 40CFR433.10(a) FOR THE 40 ANCILLARY OPERATIONS

D. [Reserved]

C. Number of Regular Employees at this Facility 70

(4) FLOW MEASUREMENT

INDIVIDUAL & TOTAL PROCESS FLOWS DISCHARGED TO POTW IN GALLONS PER DAY

Process	Average	Maximum	Type of Discharge*
Regulated (Core &		1800 GALS	BATEN
Regulated (Cyanide)			
'403.6(e) Unregulated*			
'403.6(e) Dilute			
Cooling Water			
Sanitary			
Total Flow to POTW		1800 CALS	BATCH

*If batch discharged please list the period of time of each batch discharge (300 gallons/day; 500 gallons/week, 2,000 gallons/3 months, etc). Do not normalize over that period for the average flow. ""Unregulated" has a precise legal meaning; see 40CFR403.6(e).

(5) MEASUREMENT OF POLLUTAN

A. TYPE OF TREATMENT SYSTEM

B. COMMENTS ON TREATMENT SYSTEM

CHECK EACH APPLICABLE BLOCK

G Neutralization

G Chemical Precipitation and Sedimentation.

G Chromium Reduction /

G Cyanide Destruction

G Other

G None

C. THE INDUSTRIAL USER MUST PERFORM SAMPLING AND ANALYSIS OF THE EFFLUENT FROM ALL REGULATED PROCESSES--CORE & ANCILLARY--(AFTER TREATMENT, IF APPLICABLE). ATTACH THE LAB ANALYSIS WHICH SHOWS A MAXIMUM; TABULATE ALL THE ANALYTICAL DATA COLLECTED DURING THE REPORT PERIOD IN THE SPACE PROVIDED BELOW. ZERO CONCENTRATIONS ARE NOT ACCEPTABLE; LIST THE DETECTION LIMIT IF CONCENTRATION WAS BELOW DETECTION LIMIT.

40 CFR 433.17 Pollutant(mg/l) limits	Cd	Cr	Cu	Pb	Ni	Ag	Zn	CN	TTO*
Max for 1 day	0.11	2.77	3.38	0.69	3.98	0.43	2.61	1.20	2.13
Monthly Avg	0.07	1.71	2.07	0.43	2.38	0.24	1.48	0.65	
Max Measured	OCCIZ	1.924	1.4	.002	2.5	. 46 B	.13	e 52	*
Avg Measured**	,00056	.582	19475	10015	1.2975	13412	.0785	. 261	*

Sample Location Cheene SHOP Sampley 5:78

Sample Type (Grab* or Composite) Grad
*If Grab, list # of grabs over what period of time

Number of Samples and Frequency Collected 2 Samples 24/4 + 242/10

40CFR136 Preservation and Analytical Methods Use: GYES G No (include complete Chain of Custody)

*If a TOMP has been submitted and approved by ADEQ place N/A.

**A value here is the average of all samples taken during one (1) calendar month regardless of number of samples taken. If only one (1) sample is taken it must meet the monthly average limitation.

(6) CERTIFICATION (ONLY IF A TOMP HAS BEEN SUBMITTED/APPROVED BY ADEQ
B. CHECK ONE: G '433.11(e) TOXIC ORGANIC ANALYSIS ATTACHED G '433.12(a) TTO CERTIFICATION
Based on my inquiry of the person or persons directly responsible for managing compliance with the pretreatment standard for total toxic organics (TTO), I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the wastewaters has occurred since filing of the last semi-annual compliance report. I further certify that this facility is implementing the toxic organic management plan submitted to Arkansas Department of Environmental Quality.
RICHALD E. HETALIEL (Typed/Printed Name)
(Corporate Officer or authorized representative signature)
Date of Signature 4/2/14
(7) POLLUTION PREVENTION ACT OF 1990 [42:U.S.C. 13101 et seq.]
(1)2 0200 x 2200
The User may list any new or ongoing Pollution Prevention practices including Best or Environmental Management Practices, Source Reduction, Waste Minimization, Lean Manufacturing, Water and/or Energy Conservaton: 1
2
3.
4
5
(8) GENERAL COMMENTS

40 CFR 433 SEMI-ANNUAL REPORT CON'D FACILITY NAME:

40 CFR 433 SEMI-ANNUAL REPORT CON'D FACILITY NAME:

(9) SEMI-ANNUAL/PERIODIG REPORT GERTIFICATION STATEMENT REQUIRED UNDER 40 GFR 403 12(1)

I certify under penalty of law that I have personally examined and am familiar with the information in this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

RICHAED E. HEXAMER

NAME OF CORPORATE OFFICER OR AUTHORIZED REPRESENTATIVE

Phone (479) 646-1585 FAX (479) 646-9148 **Emergency Numbers** (479) 420-1061 (918) 658-5127

Waste Water Analyses Date of Sample

2/6/14

Method

SM 3120 B SM 3120 B

Client- Street & Performance

Date of Sample-2/6/14 Date Received-2/7/14 Time Received-10:00 Collected From--**Not Specified** Control Number-Report Issued14-02-0144 2/12/14

PO Number-

Sample ID-

Water Analyzed

			Collected By Client	Collected Date Time 2/10/14 13:00	Analyzed By	Analyzed @ Date/Time
Parameter Grab	Concentration	Units				
Giab	Concentration	Units				
<u>Cyanide</u>	<0.002	mg/L			JC	2/12/14 11:00
Silver	0.468	mg/L			JC	2/11/14 14:56
Cadmium	<0.001	mg/L			ĴĊ	2/11/14 14:56
Chromium	0.924	mg/L			JC	2/11/14 14:56
Copper	0.095	mg/L			JC	2/11/14 14:56
Nickle	0.095	mg/L			JC	2/11/14 14:56
Lead	<0.002	mg/L			JC	2/11/14 14:56
Zinc	<0.027	mg/L			JC	2/11/14 14:56
			Quality Assurance	Data		
Parameter	Batch # 046-14	PRD	Acceptable Range	% Recovery	Acceptable Range	MDL (mg/L)
Cyanide		-3.18	-8.44 to 10.4		80.3 to 110	0.002
	049-14					
Silver	V-10 1-1	-11.8	-11.6 to 11.9	88.8/99.9	59.4 to 132	0.0015
Cadmium		0.000	-19.7 to 22.0	114/114	31.3 to 143	0.0015
Chromium		0.724	-12.4 to 8.90	125/124	55.3 to 116	0.0005
Copper		0.000	.081 to 12.5	129/129	87.4 to 97.7	0.0015
Nickle	•	0.731	-6.07 to 15.5	117/116	79.6 to 103	0.0015
Lead		-0.248	-18.8 to 16.5	119/120	45.2 to 119	0.0015
Zinc		-1.84	-7.63 to 9.76	116/115	63.7 to 120	0.0018

Approved by

SYMBOL DENOTES MATRIX INTERFERENCE

* SYMBOL DENOTES ANALYSIS BY OUTSIDE LAB

Date

2/12/14

\mathbb{C}^{1}	HEM /	AB 4302-Wheeler Av Fort Smith AR 72901			r.Av R.72901	CHAIN OF CU	RD	Sample Series #: 14-02-0144 Due Date:									ر —					
	/ Ø	INC.		ph. (479)			Emergency Numbers:	Jim C	ox: 479.420.903		_		Due	Date		20/2	与	2	/ _			
	<u> </u>	7		Fax (479)		•		r	ilis: 918.658.512							•						
AN	ALYTICAL S	ERVICE	ES	email	- <u>lat</u>	ochem@aol.com	•		··· · · · · · · · · · · · · · · · · ·													
	Company:		Street &	Performar hot rod lar		inç.	Container Type H-HDPE G-Glass V-VOA O-Other					· · · · · · · · · · · · · · · · · · ·	A	NAL	'SES	REQU	JĖSTI	ĒD_		·		12
				na, ar 71 95			<u>-</u>												-	10.	11	
	Phone # :	 	47	9-394-571	1		Sample Type 1. Water									-	-		9			
Clie	nt Contact:		Pich	ard Hexan	- 12 -		2. Soil 3. Sludge		نسم									8		1		
	Project#:		Rich	aro nexan	er	 	_ 4Oil 5. Other		النتر								7			1		
Site	Location: Mena, 7	ÄR .		*************************************			- 6. TCLP Extract									6		ı				i
	e-mail richard	Dhotrodlan	e.cc				7. Slurry			· · · · · · · · · · · · · · · · · · ·				4	7 5 7		ı				-	-
	T	· · · · · · · · · · · · · · · · · · ·	η <u>:</u>				-							٦ "						ı		1
6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Client Sample	Sample		tainer		Sampling			Metals - Cr, Zr	Cyanide , Cd, Pb, Ni Cu, &	Ag	٦										3
Sample #	Identification	Type	Size	Туре	#	Date/Time						1		4	5	6	7	8	9	10	11 1	-
1	MAN BARCH	1	500 ml	H	1	2/6/14 - 1500 HIL	Nitric Acid				Ø		ø	O					3 1	3 1	a 6	٦
	MATEN BATCH	1	125 ml	H	1	16/14- 1500 He	Sodium Hyrox	ide				Ø	o	□	O	0	0 1		3 T	5. 1	o o	٦
												-									5 0	┪
		<u></u>									0	0				0 1		<u>- </u>			36	Ħ
										· · · · · · · · · · · · · · · · · · ·			Ь		Ö	0				0.00	3 6	4
										- Indiana			Ь	0	Ω '				مانست		- I- - G	4
							**************************************	-						0	1				and the same		- 11	4
							J acob 1991-1997 (** 1994-1997)	<u>1.</u>		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1	<u>. </u>	1	لت	Ξ.Γ	<u>- 1</u>	<u>تات</u>		-1.	<u>- E</u>	٤
[.	Composite I	Duration	24±2	Hours							·		4	Ti	me.	Ana	yze	<u>d</u>		Ana	alyst	Ł
Date/Ti	me Sampler on			7 7 7 7 7 7 7 7 7	no (Sampler off				pH=		SU									<u></u>	┙
	#1 On Reading	201 1	- 100 m			On Reading				np=		°C	_			4						╛
	#1 Off Reading	 				Off Reading			chlorine (tot.		mg		_						_[_			
	Meter #1 Units	Gallons				er#2 Units				0.=	mg	//L		-							2.000	
<u> </u>					INICI	EI #2 Units			F.K	ow= .			<u> </u>								. 44 10	
Sample Co	andition: `						Sampler:	<u>_</u>				<u> </u>										_
																T 17 '43-1-		-jur-se				٦·
																						l
D-0																						l
Relinquishe	a By:		DATE: 2/6	44	Rece	eived By:	D	ATE:	11.	Special inst	ruction	5:		_								J
Bound	HERMEL	ļ	TIME:			trel Tole.	ļ.,		6/14	B RI	JSH D	A TE	. 0	-014	ioe	F)						
Relinquishe	A Division Line		1500 H		/	tel Forter			500	(Additio	nal cos	is ma	v an	رين. الاام	itze:	ט						
	•	1	DATE:		Rece	lived By:	D.	ATE:	- 7 . / /	d	12	14	y. 349	C2.11.								
stel h		ĥ	IME:		,	1 _	7	ME:	~7-14		•											
WIR M	13/CM	اخصا	1700 AL	5	2	and Fin		/	8200	☑ REG (Ten.cale												

☐ REGULAR (Ten calendar days)

March 12, 2014 Control No. 175733R Page 1 of 5

Mena Water and Sewer ATTN: Mr. Mike Spencer 323 County Road 53 Mena, AR 71953

This report replaces American Interplex Corporation (AIC) Control No. 175733 originally sent on March 04, 2014. This report contains the analytical results and supporting information for the sample submitted on February 25, 2014. Attached please find a copy of the Chain of Custody and/or other documents received. Note that any remaining sample will be discarded two weeks from the original report date unless other arrangements are made.

This report is intended for the sole use of the client listed above. Assessment of the data requires access to the entire document.

This report has been reviewed by the Laboratory Director or a qualified designee.

Revised to correct client name.

aboratory Director

This document has been distributed to the following:

PDF cc: Mena Water and Sewer

ATTN: Mr. Mike Spencer menawwtp@gmail.com

March 12, 2014 Control No. 175733R Page 2 of 5

SAMPLE INFORMATION

Project Description:

One (1) water sample(s) received on February 25, 2014 Street & Performance

Receipt Details:

A Chain of Custody was provided. The samples were delivered in one (1) ice chest. Ice chest #1 was delivered with shipping documentation.

Each sample container was checked for proper labeling, including date and time sampled. Sample containers were reviewed for proper type, adequate volume, integrity, temperature, preservation, and holding times. Any exceptions are noted below:

Sample Identification:

Laboratory ID	Client Sample ID	Sampled Date/Time	Notes
175733-1	S&P 001 M,C	21-Feb-2014 1502	1,2,3

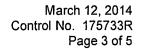
Notes:

- 1. Sample label was incomplete in regard to sample identification
- 2. Sample label was incomplete in regard to date/time of sampling
- 3. Sample was received unpreserved

Qualifiers:

D Result is from a secondary dilution factor

References:


"Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.

[&]quot;Standard Methods for the Examination of Water and Wastewaters", 21st edition.

[&]quot;American Society for Testing and Materials" (ASTM).

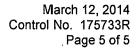
[&]quot;Association of Analytical Chemists" (AOAC).

ANALYTICAL RESULTS

AIC No. 175733-1

Sample Identification: S&P 001 M,C

Analyte		Result	RL	Units	Qualifier
Total Cyanide SM 4500-CN C,E 1999	Prep: 27-Feb-2014 0753 by 308	0.52 Analyzed: 28-Feb-	0.04 2014 1533 by 308	mg/l Batch: W46780	D Dil: 4
Total Recoverable Cadmium EPA 200.8	Prep: 26-Feb-2014 1452 by 271	0.0012 Analyzed: 27-Feb-	0.0001 2014 1332 by 305	mg/l Batch: S36338	
Total Recoverable Chromium EPA 200.8	n Prep: 26-Feb-2014 1452 by 271	0.24 Analyzed: 27-Feb-	0.007 2014 1332 by 305	mg/l Batch: S36338	
Total Recoverable Copper EPA 200.8	Prep: 26-Feb-2014 1452 by 271	1.4 Analyzed: 27-Feb-	0.01 2014 1623 by 305	mg/l Batch: S36338	D Dil: 10
Total Recoverable Lead EPA 200.8	Prep: 26-Feb-2014 1452 by 271	< 0.001 Analyzed: 27-Feb-	0.001 2014 1332 by 305	mg/l Batch: S36338	
Total Recoverable Nickel EPA 200.8	Prep: 26-Feb-2014 1452 by 271	2.5 Analyzed: 27-Feb-	0.001 2014 1332 by 305	mg/l Batch: S36338	
Total Recoverable Silver EPA 200.8	Prep: 26-Feb-2014 1452 by 271	0.00024 Analyzed: 27-Feb-	0.0002 2014 1332 by 305	mg/l Batch: S36338	
Total Recoverable Zinc EPA 200.8	Prep: 26-Feb-2014 1452 by 271	0.13 Analyzed: 27-Feb-	0.002 2014 1332 by 305	mg/l Batch: S36338	


March 12, 2014 Control No. 175733R Page 4 of 5

LABORATORY CONTROL SAMPLE RESULTS

	Spike									
Analyte	Amount	%	Limits	RPD	Limit	Batch	Preparation Date	Analysis Date	Dil	Qual
Total Cyanide	0.1 mg/l	106	85.0-115			W46780	27Feb14 0753 by 308	28Feb14 1528 by 308		
Total Recoverable Cadmium	0.05 mg/l	100	85.0-115			S36338	26Feb14 1452 by 271	27Feb14 1327 by 305		
Total Recoverable Chromium	0.05 mg/l	99.0	85.0-115			\$36338	26Feb14 1452 by 271	27Feb14 1327 by 305		
Total Recoverable Copper	0.05 mg/l	104	85.0-115			S36338	26Feb14 1452 by 271	27Feb14 1327 by 305		
Total Recoverable Lead	0.05 mg/l	96.8	85.0-115			S36338	26Feb14 1452 by 271	27Feb14 1327 by 305		
Total Recoverable Nickel	0.05 mg/l	104	85.0-115			S36338	26Feb14 1452 by 271	27Feb14 1327 by 305		
Total Recoverable Silver	0.02 mg/l	96.2	85.0-115			S36338	26Feb14 1452 by 271	27Feb14 1327 by 305		
Total Recoverable Zinc	0.05 mg/l	101	85.0-115			S36338	26Feb14 1452 by 271	27Feb14 1327 by 305		

MATRIX SPIKE SAMPLE RESULTS

Analyte	Spike Sample Amount	%	Limits	Batch	Preparation Date	Analysis Date	Dil	Qual
Total Cyanide	175800-1 0.1 mg/l 175800-1 0.1 mg/l Relative Percent Difference:	80.6 81.7 1.28	75.0-125 75.0-125 20.0	W46780 W46780 W46780	27Feb14 0753 by 308 27Feb14 0753 by 308	28Feb14 1530 by 308 28Feb14 1532 by 308	-	-
Total Recoverable Cadmium	175771-1 0.05 mg/l 175771-1 0.05 mg/l Relative Percent Difference:	87.1 86.0 1.18	75.0-125 75.0-125 20.0	S36338 S36338 S36338	26Feb14 1452 by 271 26Feb14 1452 by 271	27Feb14 1202 by 305 27Feb14 1207 by 305		
Total Recoverable Chromium	175771-1 0.05 mg/l 175771-1 0.05 mg/l Relative Percent Difference:	84.4 84.5 0.172	75.0-125 75.0-125 20.0	S36338 S36338 S36338	26Feb14 1452 by 271 26Feb14 1452 by 271	27Feb14 1202 by 305 27Feb14 1207 by 305		
Total Recoverable Copper	175771-1 0.05 mg/l 175771-1 0.05 mg/l Relative Percent Difference:	84.9 83.4 1.72	75.0-125 75.0-125 20.0	\$36338 \$36338 \$36338	26Feb14 1452 by 271 26Feb14 1452 by 271	27Feb14 1202 by 305 27Feb14 1207 by 305		
Total Recoverable Lead	175771-1 0.05 mg/l 175771-1 0.05 mg/l Relative Percent Difference:	88.7 88.2 0.528	75.0-125 75.0-125 20.0	S36338 S36338 S36338	26Feb14 1452 by 271 26Feb14 1452 by 271	27Feb14 1202 by 305 27Feb14 1207 by 305		
Total Recoverable Nickel	175771-1 0.05 mg/l 175771-1 0.05 mg/l Relative Percent Difference:	85.7 84.3 1.73	75.0-125 75.0-125 20.0	S36338 S36338 S36338	26Feb14 1452 by 271 26Feb14 1452 by 271	27Feb14 1202 by 305 27Feb14 1207 by 305		
Total Recoverable Silver	175771-1 0.02 mg/l 175771-1 0.02 mg/l Relative Percent Difference:	94.3 93.6 0.814	75.0-125 75.0-125 20.0	S36338 S36338 S36338	26Feb14 1452 by 271 26Feb14 1452 by 271	27Feb14 1202 by 305 27Feb14 1207 by 305		
Total Recoverable Zinc	175771-1 0.05 mg/l 175771-1 0.05 mg/l Relative Percent Difference:	83.0 81.6 1.47	75.0-125 75.0-125 20.0	S36338 S36338 S36338	26Feb14 1452 by 271 26Feb14 1452 by 271	27Feb14 1202 by 305 27Feb14 1207 by 305		

LABORATORY BLANK RESULTS

				QC			
Analyte	Result	RL	PQL	Sample	Preparation Date	Analysis Date	Qual
Total Cyanide	< 0.01 mg/l	0.01	0.01	W46780-1	27Feb14 0753 by 308	28Feb14 1501 by 308	. —
Total Recoverable Cadmium	< 0.0001 mg/l	0.0001	0.0001	S36338-1	26Feb14 1452 by 271	27Feb14 1151 by 305	
Total Recoverable Chromium	< 0.007 mg/l	0.007	0.007	S36338-1	26Feb14 1452 by 271	27Feb14 1151 by 305	
Total Recoverable Copper	< 0.0005 mg/l	0.0005	0.0005	S36338-1	26Feb14 1452 by 271	27Feb14 1151 by 305	
Total Recoverable Lead	< 0.0005 mg/l	0.0005	0.0005	S36338-1	26Feb14 1452 by 271	27Feb14 1151 by 305	
Total Recoverable Nickel	< 0.0005 mg/l	0.0005	0.0005	S36338-1	26Feb14 1452 by 271	27Feb14 1151 by 305	
Total Recoverable Silver	< 0.0002 mg/l	0.0002	0.0002	S36338-1	26Feb14 1452 by 271	27Feb14 1151 by 305	
Total Recoverable Zinc	< 0.002 mg/l	0.002	0.002	S36338-1	26Feb14 1452 by 271	27Feb14 1151 by 305	

CHAIN OF CUSTODY / ANALYSIS REQUEST FORM

سنسنح				——————————————————————————————————————			_									•	PAGE	(OF)	
Client:	MENA			P	O No.	NC			AN.	ALYS	ES REC	QUEST	ED					NTROL NO:	
Projec	1 /1 14	0 5				OF	7					1.						15133	
Refere	ence: Street & ler: Mike S ed Jeff F Sample	Pertorman	<u>ce</u>		SAMPLE		-							-			AIC PR	OPOSAL NO:	
Manag	ier Mike S	pewcer			MATRIX VI	니 우	7	ide				1					Carrier:		· · ·
Sampl	ed T		G	히	s	1 +	Meta 15	٦.		ŀ				- 1	1		<u></u>	LRS	
Ву:	307 r	lanisan			rlol	li	Sha	\$ Z	1			j i		- 1			Receive	d Temperatur	re C
AIC	Sample	Date/Time		M E	≣ ι :	Ε	Me See	۱. ۲			-			1		ļ.		0.4°C	
No.	identification	Collected	В	PF	₹ L	S	7 18	7			1	}						Remarks	
1	SAPOOI M	21 FEB 2014/ See comments		X		1	X										 -	Nemarks	-
1 2	SAPOOL C	21 FEB 2014	\neg	V		Ť	 	7	 		_					 			
	24/04/ [spe comments		4	++			X				<u> </u>							
<u> </u>																	i		
				ŀ	1														
										-	+	-				}		<u></u>	
				_	1 -		<u> </u>				_								
											_								
<u> </u>	·					_								.}			Field 5H	calibration	-
		Container Type				P											on_	@	
		Preservative															Buffer:		-
	G = Gla	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '				= VOA		-			HCI to				T = S		Thiosulfa	ite	
Tumar	NO = no ound Time Requeste		ic acid	d pH2	N.	= Nitri	ecid p			<u>B =</u>	NaOH		2		Z = Zi	inc ace	etate		1
NOR	MAL or EXPEDITE	in in Days					Relino	uishe	ed		Date	/Time			ceived	M 1	L	Date/Time,	
Expedi	ted results requested	i by:					FIT	CHA.	ed He	Kam	M 2/2	1/14	150	د/ By:	1970	,	2	Date/Time	504
Who s	hould AIC contact wit					•	IRelino	หม่รหล	d	_	Date	/Vime	70V/	Be	celved in	₹ab		Date/Time	
Phone Report	Attention to:	Fax:		<u></u>			By:	19/	PH	~	24	reb,	タンタ	MERK	celved in	- 	.	<i>2/</i> 2 <i>5/</i> 14	(
	Address to:	•					Comn	nents:	COVA	'क्टो १	te of	405	pra6s)	astol	6475	7		LIOZO Kit bac	
							10	رِه', ۲	,1116	12/1	13:2	2/5	הביל הביל		7	<u>ت</u> ساد عد	sevia	tcyanide	.
	5/01						WS:	5981	3/02			12	<u> </u>	" ** • • • ••	, ,	OK I	יצוטוא	+ \ 74 n ide	. ·
								li							, Z	FOR W	ext Q	FORM 0060	

UPS 12 WFO 666 01 4094 1982

Permit No. MENA01 Permit SP 2012 (3)

SECTION B. DISCHARGE LIMITATIONS & MONITORING REQUIREMENTS

The following limitations and monitoring requirements shall apply to discharge from Location S&P002 except for cyanide and flow usage, which apply as specified in the Table I-1 footnotes. The Permittee shall monitor the discharge from Locations S&P001 and S&P002, and the incoming water usage, and shall be limited as specified below:

Table I-1											
	LIMIT	ATIONS ¹	MONITORING REQUIREMENTS								
Parameter	Daily Maximum	Monthly Average ²	Frequency ³	Sample Type							
	(mg/l)	(mg/l)									
Cadmium, total	0.11	0.07	Quarterly	Composite of 4 grabs							
Chromium, total	2.77	1.71	Quarterly	Composite of 4 grabs							
Copper, total	3.38	2.07	Quarterly	Composite of 4 grabs							
Lead; total	0.69	0.43	Quarterly	Composite of 4 grabs							
Nickel, total;	3.98	2.38	Quarterly	Composite of 4 grabs							
Silver, total	0.43	0.24	Quarterly	Composite of 4 grabs							
Zinc, total	2.61	1.48	Quarterly	Composite of 4 grabs							
Cyanide, total	1.20	0.65	Quarterly	Composite of 4 grabs 4							
TTO, 40 CFR 493	2.13	-	NA	Certification ⁴							
Flow, Usage	Report	Report	Continuous	Totalizer ⁵							
Flow, Discharge	Report	Report	Continuous	Totalizer ⁶							

It is the Permittee's responsibility to ensure test detection levels are sufficiently low to demonstrate compliance with permit limitations. If an analytical result is below the laboratory detection limit, then the detection limit shall be used in the calculation of pounds unless permitted otherwise by the Control Authority. Use the following or lower detection limits in micrograms per liter (ug/l): 0.5 cadmium, copper, lead, nickel, and silver; 10 for chromium and cyanide; 0.005 for mercury; 20 for zinc.

² Monthly average is the average of all daily results in a calendar month regardless of the number of samples analyzed.

⁴ Cyanide samples must be collected from Location S&P002 unless no process water has flowed through Location S&P002 during the monitoring day, then samples will be from Location S&P001.

The Permittee has a State-approved Toxic Organics Management Plan (TOMP) and must comply with the

Week means Sunday through Saturday. Month means calendar month. Quarter means calendar quarter, Jan-Mar, Apr-Jun, Jul-Sep, and Oct-Dec. For this permit, Quarterly samples shall be collected in March, June. September, and December. The date and time of an individual grab sample is the date and time at which the sample is collected. The date of a composite sample is the date on which sample collection for the composite sample is started and stopped. The composite sample date will be one day if the composite sample is collected on one day, e.g. April 14, 2007, or two days if the composite sample is collected over two days, e.g. April 14-15, 2007. Monitoring by the Control Authority is not a substitute for monitoring required to be conducted by the Permittee in this permit unless the Control Authority notifies the Permittee in writing that specific monitoring by the Control Authority can be used to meet permit frequency requirements.

FROM: (479) 394-5711
NICK FOSTER
STREET & PERFORMANCE
#1 HOT ROD LANE
MENA AR 71953
IS

TO ALLEN GILLIAM
ADEQ/ WATER DEPT.
5301 NORTHSHORE SRIVE

NORTH LITTLE ROCK AR 72118
(479) 394-5711
REF: ADEQ WATER DEPT

Fed Ex
Ground

Groun

TRK# 6027 7023 6803

ASR 72118

9622 0151 0 (000 162 8346) 8 00 6027 7023 6803

Part # 156148-434 RIT2 10/13 ••

722 C. WATER DEFE DR 72118-5317-01 SORTH PROPERTY OF TAIL SOUTH TO TAIL